Microprocessor

Assembly Language Programs

Flowchart :

)

‘ Start)

I Read muittiplicand]

\
[Read multiplier I

Y

Make result =0
lteration count = 8

\

Shift result left
by 1-bit

Rotate multiplier
and check current
MSB of muitiplier

I Add multiplicand in the resuilt l

Decrement iteration
counter

Multiplication of HEX numbers
PROMPT MACRO MESSAGE

PUSH
MOV
LEA
INT
POP
ENDM

.MODEL SMALL
.STACK 100
.DATA

AX
AH,
DX,
21H
AX

~~

; parameter

No

I Display resultj

7

Stop

Define macro with MESSAGE as a

; save register

03H
MESSAGE

~~

~e

display message

restore register

; select small model

; start data segment

Microprocessor

5-34 Assembly Language Programs

MUL ER DB ?
MUL_AND DB ?

; define NUMBER
; define NUMBER

MES1 DB 10,13, 'Enter 2~digit hex number as a multiplicand:$’
MES2 DB 10,13, 'Enter 2-digit hex number as a multiplier :§'
MES3 DB 10,13, 'The result of multiplication is :$'

.CODE
START: MOV AX,
MOV DS,

PROMPT
CALL
MOV

PROMPT
CALL
MoV

MOV
MOV
MOV
MOV
REP1: SHL
ROL
JNC
ADD
SKIP: LOOP
PROMPT
CALL
MOV
MOV
INT
MOV
INT

; start code segment
@DATA ; [Initialize
AX ; data segment]

MES1
READ_HEX2
MUL_AND, BL

MES2
READ_HEX2
MUL_ER, BL

DH, 00

DL, MUL_AND

CX, 0008

AX, 0000

AX,1

BL, 1

SKIP

AX, DX

REP1

MES3

D_HEX

AH, 02H

DL, 'H'

21H

AH, 4CH ; [Exit to
21H ; DOS]

READ_HEX2 PROC NEAR

MOV
MOV

MOV
BACK : MoV

CL, 04 ; load shift count
SI, 02 ; load iteration count
BL, 0 H clear result

AH, 01 ; [Read a key

Microprocessor

5-35 Assembly Language Programs

INT
CALL
SHL
ADD
DEC
JNZ
RET
ENDP

21H
CONV
BL, CL
BL, AL
SI
BACK

; with echo]

; convert to binary
; [pack two

; binary digits

; as 8-bit

; number]

; The procedure to convert contents of AL into

; hexadecimal equivalent

CONV PROC NEAR
AL, '9’
SUBTRA30

CMP
JBE

JB
SUB
JMP
SUBTRA30:SUB
JMP
SUBTRA37:SUB
LAST: RET
CONV ENDP

SUBTRA37

AL,

LAST

AL,

LAST

AL,

D_HEX PROC NEAR

MOV
MOV
BAC1: ROL
PUSH
AND
CMP

Add30:
ADD
DISP1: MOV
MOV
INT
POP

CcL,
CH,
AX,
AX
AL,

AL, 9

57H

30H

37H

04H
04H
CL

OFH

Add30

AL,

37H

DISP1

AL, 30H
AH,02H
DL, AL

21H
AX

~e

~

~

.

if number is between 0 through 9
CMP AL,'a’

if letter is uppercase

subtract 57H if letter is lowercase

convert number

convert uppercase letter

Load rotate count
Load digit count
rotate digits
save contents of AX
[Convert

number
to
its
ASCII

equivalent]
[Display the

number]
restore contents of AX

Microprocessor 5-36 Assembly Language Programs

DEC CH ; decrement digit count
JNZ BAC1 ; 1if not zero repeat
RET

ENDP

END

Multiplication of BCD numbers
PROMPT MACRO MESSAGE ;Define macro with MESSAGE as a parameter

PUSH AX

MOV AH, O09H

LEA DX, MESSAGE

INT 21H

POP AX

ENDM
.MODEL SMALL ; select small model
.STACK 100

.DATA ; start data segment
MUL_ER DB ? ; define NUMBER
MUL_AND DB ? ; define NUMBER
MES1 DB 10,13, 'Enter 2-digit BCD number (<256) as a
multiplicand : $'
MES2 DB 10,13, 'Enter 2-digit BCD number (<256) as a
multiplier : §°'
MES3 DB 10,13, 'The result of multiplication is : §'
.CODE ; start code segment
START: MOV AX, Q@DATA ; [Initialize

MOV DS, AX ; data segment]

PROMPT MES1
CALL BTH
MoV MUL_AND,AL

PROMPT MES2

CALL BTH

MoV MUL_ER, AL
MOV BL,AL

Microprocessor 5-37 Assembly Language Programs

MOV DH, 00
MOV DL, MUL_AND
MoV CX, 0008
MOV AX, 0000
REP1: SHL AxX,1
ROL BL, 1
JNC SKIP1
ADD AX, DX
SKIP1: LOOP REP1
PROMPT MES3
CALL D_BCD
MOV AH, 4CH ; [Exit to
INT 21H ; DOS]

BTH PROC NEAR

MOV CX, 10 ; load 10 decimal in CX
MOV BX, 0 ; clear result
BACK2: MOV AH,01H ; [Read key
INT 21H ; with echo]
CMP AL, '0’
JB SKIP ; jump if below ‘0’
CMP AL,'9’
JA SKIP ; Jjump if above ‘9’
SuB |, AL, 30H ; convert to BCD
PUSH e AX ; save digit
MoV AX, BX ; multiply previous result by 10
MUL cX
MoV BX, AX ; get the result in BX
POP AX ; retrieve digit
MOV AH, 00H
ADD BX, AX ; Add digit value to result
JMP BACK2 ; Repeat
SKIP : MoV AX,BX ; save the result in AX
RET

Microprocessor

5-38 Assembly Language Programs

Program 21 : Divide 4 digit BCD number by 2 digit BCD number.
PROMPT MACRO MESSAGE ;Define macro with MESSAGE as a parameter

PUSH
MOV
LEA
INT
POP
ENDM

.MODEL SMALL
.STACK 100

.DATA

DIVISOR
DIVIDEND

MES1
MES2
MES3
MES4

DB

DB
DB
DB
DB

AX

AH, O09H

DX, MESSAGE
21H

AX

; select small model

; start data segment

define NUMBER

? ; define NUMBER

10,13, 'Enter 4-digit BCD number as dividend:$"'
0,13, 'Enter 2~digit BCD number as a divisor:$'
10,13, ‘'The Quotient of Division is I
10,13, 'The Remainder of Division is : $!'

?

~

Microprocessor

5-39 Assembly Language Programs

.CODE
START: MOV
MOV

PROMPT
CALL

PROMPT
CALL
MOV

MOV
DIV

MoV

PROMPT

MoV
CALL D_BCD

PROMPT

MoV
MoV
CALL D_BCD
MOV
INT

; start code segment
AX, @DATA ;
DS, AX ;

[Initialize
data segment]

MES1
ATB

MES2
BTH
DIVISOR, AL

AX, DIVIDEND '
DIVISOR.

BX, AX
MES3
AH, 00

[Exit to
DOS]}

Microprocessor 5-40 - Assembly Language Programs

Microprocessor 5-41 Assembly Language Programs

Program 22 : To perform conversion of temperature from °F to °C.
PROMPT MACRO MESSAGE ;Define macro with MESSAGE as a parameter

PUSH AX

MOV AH, O09H

LEA DX, MESSAGE

INT . 21H

POP AX

ENDM
.MODEL SMALL ; select small model
.STACK 100
.DATA ; start data segment

NUMBER DW *? ; define NUMBER

MES1 DB 10,13, 'Enter Temperature in Degree FARENHEIT : $'
MES2 DB 10,13, 'The Temperature in Degree Celsius is : s

Microprocessor

5-42

Assembly Language Programs

.CODE
START:

LAST:

MOV
MOV

PROMPT

CALL

MOV
SUB
MOV

MOV
MOV
MUL
DIV

MOV
PROMPT
CALL
CMP

Jz

MOV
MOV
INT

MOV
MUL
DIV
CALL

MOV
INT

AX, @DATA
DS, AX

MES1

ATB

AX,NUMBER
AX,20H
NUMBER, AX

BX, 05
CcX, 09
BX
CX

NUMBER, DX
MES2

D_BCD
NUMBER, 0
LAST

DL, '.'
AH, 02H

21H

AX,0064H
NUMBER
CX

D_BCD

AH,
21H

4CH

~e

~e

~

~

~

start code segment
[Initialize
data segment]

Get the Temperature in F

Subtract 32

Multiply by 5
Divide by 9

Save remainder

Display result in decimal

If remainder is zero exit

Display decimal point

Multiply remainder by 100
Divide result by 9

display fractions

[Exit to
DOS]

Microprocessor 5-43 Assembly Language Programs

Microprocessor 5-44 Assembly Language Programs

Program 23 : String operations

Program Statement : Write 8086 ALP for the following operations on the string entered
by the user.

a. Calculate length of the string.

b. Reverse the string.

c. Check whether the string is palindrome or not.
Make your program user friendly by providing MENU like :
a. Enter the string.

b. Calculate length of string.

c. Reverse string.

d. Check palindrome.

e. Exit.

Here we use PROMPT macro to display the message on the screen, accept choice from
the user and call proper procedure to perform desired task. To enter a string we use
function 0AH of INT21. This function accepts a string and stores it in the buffer along
with its length. Let us see the algorithm and flow chart.

Microprocessor 5-45 Assembly Language Programs

Algorithm :

1. Display Menu
a. Enter the string.
b. Calculate length of the string.
¢. Reverse the string.
d. Check whether the string is palindrome or not.
e. Exit.
Enter the option : -
2. Read the option
If option is
a. Read the string.
b. Read the string length and display it.
c. Initialize pointer at the end of the string and display the string from end to
start.
d. i) Initialize two pointers one at start and other at the end.
ii) Compare two bytes; if not equal stop and display string is not palindrome.
iii) Increment start pointer and decrement end pointer.
iv) Repeat step ii) and iii) until two pointers overlap i.e. until start pointer
reach the half the string.
e. Exit to DOS.
3. Stop.

Microprocessor 5-46 Assembly Language Programs

Flowchart :

| Display menu I

|
Read option

Display length of
the string

Yes

Display reverse
string

Yes

i

ICheck palindromﬂ-———»
o

Display message
enter correct option

Microprocessor

Assembly Language Programs

Flowchart : String Reverse

Set pointer to
End of the string

!

Count = String Length

—

/ Display pointed character /

!

Pointer =Pointer -1
Count = Count -1

No

Yes

Flowchart : String Palindrome

Initialize pointer at
the start of the string

!

Initialize pointer at
the end of the string

[lnitia!ize counter = IengthIZJ

Compare characters
pointed by two strings

Are

characters No

equal
?

Yes

I Decrement counter I

Is

counter =0

Display message
string is palindrome

| Y

Display message
string is not palindrome

Microprocessor 5-48 Assembly Language Programs

PROMPT MACRO MESSAGE ;Define macro with MESSAGE as a parameter

PUSH AX ; save AX register
MOV AH, O09H ; display message
LEA DX, MESSAGE
INT 21H
POP AX ; restore AX register
ENDM
.MODEL SMALL ; select small model
.STACK 100
.DATA ; start data segment
MES1 DB 10, 13, 'l. ENTER THE STRING §$'
MES2 DB 10, 13, '2. CALCULATE THE LENGTH OF STRING §'
MES3 DB 10, 13, '3. REVERSE THE STRING $'
MES4 DB 10, 13, '4. PALINDROME §'
MES5 DB 10, 13, '5. EXIT §'
MES6 DB 10, 13, 'ENTER THE CHOICE : §'
MES7 DB 10, 13, 'ENTER CORRECT CHOICE : §'
MES8 DB 10, 13, '$°'
MES9 DB 10, 13, 'FAILED : STRING IS MISSING -~ PLEASE
ENTER THE STRINGS'
MES10 DB 10, 13, 'STRING LENGTH IN DECIMAL IS : §'

MES11 DB 10, 13, 'STRING IS NOT PALINDROME S$'
MES12 DB 10, 13, 'STRING IS PALINDROME §$'

FLAG DB 0
MES13 DB 10, 13, 'ENTER THE STRING: $'
MES14 DB 10, 13, 'THE STRING IS : §'
BUFF DB 80

DB 0

DB 80 DUP(0)
COUNTER1 DW O
COUNTER2 DW 0

Microprocessor

5-49 Assembly Language Programs

.CODE
START:

BEGIN:

AGAIN:

NEXT1:

NEXT2:

NUMBER

MOV AX,
MOV Ds,

PROMPT
PROMPT
PROMPT
PROMPT
PROMPT
PROMPT
PROMPT
PROMPT

MOV
INT

PROMPT

CMP
Jz

CMP
JNZ
CALL
PROMPT
PROMPT
CALL
JMP

CMP

CALL
JMP

CMP

CALL

DW ?

@DATA
AX

MESS8
MESS8
MES1
MES2
MES3
MES4
MESS5
MES6

AH, 01
21H

MES8

AL,'S!
LAST

AL, '1'
NEXT1
E_STR
MES8

MES14
D_STR
BEGIN

AL, '2"
NEXT2
L_STR
BEGIN

AL, '3'
NEXT3
R_STR

.
’
.
’
.
’
.
14

.
4

.
’

’

.
12

.
’

.
’

.
4

.
’

’

.
r

’

’

’

define NUMBER
start code segment
[Initialize
data segment]
Display MESS8
Display MESS8
Display MES1
Display MES2
Display MES3
Display MES4
Display MES5
Display MES6

{ READ

OPTION]

Display MESS8

[If choice is 5
exit]

[If choice is 1

Enter the string

Display the string

exit]

[If choice is 2

Calculate the length of the string
exit]

[If choice is 3

Reverse the string

Microprocessor 5-50 Assembly Language Programs

JMP BEGIN ; exit)
NEXT3: CMP AL, '4' ; [If choice is 4
JINZ NEXT4
CALL P_STR ; Palindrome of the string
JMP BEGIN ; exit]

NEXT4: PROMPT MES7 Display MES7

~

JMP AGAIN
LAST: MOV AH, 4CH ; Return to DOS
INT 21H

E_STR PROC NEAR

PROMPT MES13 ; Display message MES13
MOV AH, OAH

LEA DX,BUFF ; I/P the string.

INT 21H

MOV FLAG, 1

RET

ENDP

L_STR PROC NEAR

CMP FLAG, 0
JNZ SKIP
PROMPT MES9
RET

SKIP: MOV AL, BUFF+1

PROMPT MES10
CALL D_HEX
RET
ENDP

R_STR PROC NEAR
CMP FLAG, 0
JNZ SKIP1
PROMPT MES9
RET

Microprocessor

Assembly Language Programs

SKIP1:

P _STR PROC NEAR

BACK4:

LAST2:

D_STR PROC NEAR

BACK:

CALL
RET
ENDP

LEA
MoV
MOV
MOV
DEC
SAR
MOV
MOV
MOV
CMP
JNZ
DEC
INC
DEC
JNZ
PROMPT
RET
PROMPT

RET
ENDP

LEA
MOV
MOV
MOV
MOV

MOV
INT
INC
LOOP
RET
ENDP

DR_STR

BX, BUFF+2
CH, 00H
CL,BUFF+1
DI, CX

DI

CL,1

SI,00H

AL, [BX + DI}
AH, [BX + SI]
AL, AH

LAST2

DI

SI

CL

BACKA4

MES12

MES11

BX, BUFF

CH, 00H
CL,BUFF +1
DI, 00

DL, [BX+DI+2]

AH, 02H
21H

DI
BACK

.
4

~e we

~~

Get starting address of string

Get the right most character
Get the left most character
Check for palindrome

If not exit

Decrement end pointer
Increment starting pointer
Decrement counter
If count not = 0, repeat

Display message 12

Display message 11

[Take character
count in
DI]
Point to the start
character and read it

Display the character
Decrement count
Repeat until count is 0

Microprocessor 5-52 Assembly Language Programs

DR_STR PROC NEAR
LEA BX,BUFF

MOV CH, 00H ; [Take character
MOV CL,BUFF+1 i count in
MOV DI,CX ; DI]
BACK3: MOV DL, [BX+DI+1] ; Point to the start
; character and read it
MOV AH, 02H
INT 21H ; Display the character
DEC DI ; Decrement count
JNZ BACK3 ; Repeat until count is 0
RET
ENDP

END

Program 24 : String manipulations

Program Statement :

Write 8086 ALP to perform string manipulation. The strings to be accepted from the
user is to be stored in code segment Module_1 and write FAR PROCEDURES in code
segment Module_2 for following operations on the string.

a. Concatenation of two strings.
b. Compare two strings.
¢. Number of occurrences of a sub-string in the given string.

d. Find number of words, characters and capital letters from the given text in the
data segment.

Microprocessor 5-53 Assembly Language Programs

Note : Use PUBLIC and EXTERN directive. Create +OBJ files of both the modules and
link them to create an EXE file. Command : Tlink M1.0BJ M2.0B]J

In this experiment we have to write two «asm programs one for accepting strings and
one for procedures.

Algorithm : Module_1

1. Display Menu
a. Enter the strings.
b. Concatenation of two strings.
c. Compare two strings.
d. Find number of occurrences of a substring.
e. Find words, characters and capital letters.
f. Exit.
2. Read option
It's option is
1. Read two strings.
Concatenate two strings.
Compare two strings.

Find number of occurrences of a substring.

AN

Find words, characters and capital letters.
6. Exit.
3. Stop

M1 : String operations
PROMPT MACRO MESSAGE ;Define macro with MESSAGE as a parameter

PUSH AX ; save registers
PUSH DX
MOV AH, OSH ; display message
LEA DX, MESSAGE
INT 21H
POP DX ; restore registers
POP AX
ENDM

.MODEL SMALL ; select small model

.STACK 100

Microprocessor 5-54 Assembly Language Programs

.DATA ; start data segment
PUBLIC BUFF1
PUBLIC BUFF2
PUBLIC BUFF3

MES1 DB 10, 13, 'l. ENTER THE STRING §'

MES2 DB 10, 13, '2. CONCATENATION OF TWO STRINGS $'

MES3 DB 10, 13, '3. COMPARE TWO STRINGS §'

MES4 DB 10, 13, '4. NUMBER OF OCCURENCES OF A
SUBSTRING §$'

MES5 DB 10, 13, '5. FIND WORDS,CHARACTERS AND CAPITAL
LETTERS §$'

MES6 DB 10, 13, '6. EXIT §'

MES7 DB 10, 13, 'ENTER THE CHOICE : §'

MES8 DB 10, 13, 'ENTER CORRECT CHOICE : §'

MES9 pB 10, 13, 'S

MES10 DB 10, 13, 'STRING IS MISSING ~ PLEASE ENTER
THE STRINGS'

MES11 DB 10, 13, 'CONCATENATED STRING IS : §'

MES12 DB 10, 13, 'TWO STRINGS ARE SAME $'

MES13 DB 10, 13, 'TWO STRINGS ARE NOT SAME §$'

FLAG DB 0

MES14 DB 10,13, 'ENTER THE STRING: §'
MES15 DB 10,13, 'THE STRING IS : §'

BUFF1 DB 80

DB 0

DB 80 DUP(O0)
BUFF2 DB 80

DB 0

DB 80 DUP(0)
BUFF3 DB 80
DB 0
DB 80 DUP(O0)
.CODE ; start code segment

EXTRN CON_STR:FAR
EXTRN COM_STR:FAR
EXTRN SUB_STR:FAR
EXTRN FWCC_STR:FAR

Microprocessor 5-55 Assembly Language Programs
START: MOV AX, @DATA ; [Initialize
MOV DS, AX ; data segment]
MOV ES, AX
BEGIN: PROMPT MES9 ; Display MES9
PROMPT MES9 ; Display MES9
PROMPT MES1 ; Display MES1
PROMPT MES2 ; Display MES2
PROMPT MES3 ; Display MES3
PROMPT MES4 ; Display MES4
PROMPT MESS5 ; Display MESS
PROMPT MES6 ; Display MES6
PROMPT MES7 ; Display MES7
AGAIN: MOV AH, 01 ; [READ
INT 21H ; OPTION]
CMP AL,'6’ ; [If choice is 6
JZ LAST ; exit]
MOV BL, FLAG ; Check for first occurrence
CMP BL, 0
JNZ SKIP ; if not skip
CMP AL,'1’ ; check if choice is 1
JE SKIP ; if yes skip
PROMPT MES10 ; otherwise give error message
JMP BEGIN ; and enter the strings
SKIP: PROMPT MES9 ; Display MES9
CMP AL,'1l’ ; [If choice is 1
JNZ NEXT1
LEA DX, BUFF1
CALL E_STR ‘ ; Enter the stringl
LEA DX, BUFF2
CALL E_STR ; Enter the string2
MOV FLAG, 1
JMP BEGIN ; exit]

Microprocessor 5-56 Assembly Language Programs

NEXT1: CMP AL, '2° ; [If choice is 2
JNZ NEXT2
CALL CON_STR Concatenate two strings
JMP LAST ; exit]
NEXT2: CMP AL, '3’ ; [If choice is 3
JNZ NEXT3
CALL COM_STR ; Compare two string
JMP BEGIN ; exit]
NEXT3: CMP AL, '4’ ; [If choice is 4
JNZ NEXT4
CALL SUB_STR ; Find number of occurences of a
; sub-string in the given string
JMP BEGIN ; exit]
NEXT4: CMP AL,'S’ ; [If choice is 4
JNZ NEXTS
CALL FWCC_STR ; Find word, character and capital
; letters in the string
JMP BEGIN ; exit]
NEXT5: PROMPT MESS8 ; Display MESS8
JMP AGAIN
LAST: MOV AH, 4CH ; Return to DOS
INT 21H

E_STR PROC NEAR

PROMPT MES1 ; Display message MES1
MOV AH, OAH ; I/P the string.

INT 21H

RET

ENDP

END

Microprocessor 5-57 Assembly Language Programs
M2 : For string operations
.MODEL SMALL
.STACK 100
.DATA
EXTRN BUFF1:BYTE
EXTRN BUFF2:BYTE
EXTRN BUFF3:BYTE
MESS1 DB 10,13, 'STRINGS ARE SAME §'
MESS2 DB 10,13, 'STRINGS ARE NOT SAME §'
MESS3 DB 10,13, 'NUMBER OF ALPHABETS IN THE STRING
ARE:S'
MESS4 DB 10,13, 'NUMBER OF CAPITAL LETTERS IN THE STRING
ARE:§'
MESS5 DB 10,13, 'NUMBER OF WORDS IN THE STRING ARE : $'
MESSé DB 10,13, 'NUMBER OF OCCURRENCES OF SUBSTRING IN
THE STRING ARE : §'
WFLAG DB 0
ACOUNT DB 0 ‘
CCOUNT DB 0
WCOUNT DB 1
C_ADDR DW ? ; current address of pointer
E ADDR DW ? ; End address of string
.CODE
PUBLIC CON_STR
PUBLIC COM STR
PUBLIC SUB_STR
PUBLIC FWCC_STR
CON_STR PROC FAR
CLD
MOV CH, 00 ; copy string 1
MOV CL, BUFF1l+1
LEA SI, BUFF1+2
LEA DI, BUFF3+2
REPZ MOVSB
MOV CH, 00 ; copy string 2

MOV CL, BUFF2+1

Microprocessor 5-58 Assembly Language Programs

DISNEXT:

LEA SI, BUFF2+2
REPZ MOVSB

MOV CL, BUFF1+1 ; calculate and store length of
concatenated string

ADD CL, BUFF2+1 ;

MOV BUFF3+1,CL

MOV CH, 00 ; Display concatenated string
LEA SI,BUFF3+2

MOV BRH, 02H

MOV DL, [STI]

INT 21H

INC SI

LOOP DISNEXT

RET

CON_STR ENDP

COM_STR PROC FAR

NOTEQ:

MOV CH,BUFF1+1 ; check two string character by character
MOV CL,BUFF2+1

CMP CH,CL

JNZ NOTEQ

CLD

MOV CH, 00

LEA SI,BUFF1+2

LEA DI,BUFF2+2

REPE CMPSB

JNZ NOTEQ

MOV AH, 09H ; if equal display message accordingly

LEA DX,MESS1

INT 21H

JMP RE

MOV AH, 0SH ; if not equal display message
accordingly

LEA DX,MESS2

INT 21H

Microprocessor 5-59 Assembly Language Programs

RE: RET
COM_STR ENDP

SUB_STR PROC FAR

MOV BL, 00

LEA SI, BUFF1+2

MOV C_ADDR, SI ; Load current address

MOV DL, BUFF1+1

MOV DH, 00

MOV AX, SI

ADD AX, DX

MOV E_ADDR, AX ; load end address
ST1: MOV CH,O0

MOV CL,BUFF2+1 ; load length of substring

LEA DI,BUFF2+2 ; initialize pointer to substring
BBB: MOV BH, [SI]

CMP BH,BYTE PTR [DI] ; compére substring characters

JNZ NNNEXT ; 1f not equal go to NNNEXT

INC SI ; otherwise increment character pointers

INC DI ; and confine

LOOP BBB

INC BL ; 1f substring occurs increment count

CMP SI, E_ADDR ; check for end of string

JNZ ST1 ; 1f not zero go to check more

occurrences
JMP LLLAST ; if end of string go to display number

of occurrences
NNNEXT: MOV SI,C_ADDR
INC SI
MOV C_ADDR, SI ; modify current address
CMP SI, E ADDR
JNZ ST1
LLLAST:
MOV AH, 09H ; display number of occurrences of string
LEA DX, MESS6
INT 21H
MOV AL,BL

CALL DIS HEX
RET

Microprocessor 5-60 Assembly Language Programs

SUB_STR ENDP

FWCC_STR PROC FAR

MOV CH, 00
MOV CL, BUFF1l+1
LEA SI, BUFF1+2
BB: MOV AL, [SI}] ; check of space
CMP AL,' '
JNZ NNEXT
MOV AL, WFLAG ; 1f space occurs increment word count
CMP AL, 0
Jz LLAST
MOV WFLAG, 0
INC WCOUNT
JMP LLAST
NNEXT: MOV WFLAG, 1
; JIF AL >= 'A' && AL <= 'Z’

CMP AL, 'A’
JB LLAST ; check if alphabet
CMP AL,'Z’ ; if yes increment alphabet count

JA NNEXT1
INC ACOUNT
INC CCOUNT

; .ENDIF
NNEXT1: ;.IF AL >= 'a' && AL <= 'z!
CMP AL, 'a'
JB LLAST ; check if alphabet
CMP AL,'z' ; if yes increment alphabet count
JA LLAST
INC ACOUNT
; .ENDIF
LLAST: INC SI
LOOP BB
MOV AH, 09H ; display alphabet count
LEA DX,MESS3
INT 21H

MOV AL, ACOUNT

Microprocessor 5-61 Assembly Language Programs

CALL DIS_HEX

MOV AH, 09H i display character count
LEA DX,MESS4

INT 21H

MOV AL, CCOUNT

CALL DIS_HEX

MOV AH, 09H ; display word count
LEA DX,MESS5

INT 21H

MOV AL, WCOUNT

CALL DIS_HEX

MOV ACOUNT, 0
MOV CCOUNT, 0
MOV WCOUNT, 1

RET
FWCC_STR ENDP

DIS_HEX PROC NEAR
MOV AH, O0H
ARM : i

i

Convert ‘to BCD o
'Convert tor ASCII-:“

-

ADD BX, 3030H =~

~~

MOV BX, AX s - "ff' ; Save result
MOV DL, B St R e g first digit (MSD) .
. MoV AH;_dé : Wt ” : Load’ functlon number
JINT 21H [e ';;Dlsplay flrst dlglt (MSD)M
MOV DL, BL . ey d digit (LSD)
INT 21H 8 e e Dlsplay seccnd dlqlt (LSD)
RET F '

ENDP

END

Microprocessor

5-62 Assembly Language Programs

Program 25 : Sorting of array

Program Statement :

Write 8086 ALP to arrange the numbers stored in the array in

ascending as well as descending order. Assume that the first location in the array holds
the number of elements in the array and successive memory locations will be actual array
elements. Write separate subroutine to arrange the numbers in ascending and descending
order. Accept key from the user.

If user enters 1 : Arrange in ascending order

If user enters 2 : Arrange in descending order

Sorting of Array

PROMPT MACRO MESSAGE ; Define macro with MESSAGE as a
PUSH AX ; parameter save register
MOV AH, OSH ; display message
LEA DX, MESSAGE
INT 21H
POP AX ; restore register
ENDM

.MODEL SMALL

.STACK 100
.DATA
ARRAY DB
MES1 DB
MES2 DB
MES3 DB
MES4 DB
MESS DB
MES6 DB
MES7 DB
.CODE
START: MOV
MOV
PROMPT
PROMPT
PROMPT

PROMPT

10, 53H,20H,30H,25H,50H,09H,7OH,13H,90H,OOH
10,13, 'l. SORT ARRAY IN THE ASCENDING ORDER $'

10,13, '2. SORT ARRAY IN THE DESCENDING ORDER $'
10,13, '3. EXIT §'

10,13, 'ENTER THE CHOICE : &'

10,13, 'SORTED ARRAY IS : §'

10,13, 'ENTER CORRECT CHOICE : §'

10,13, '$!

AX, @data ; [Initialise
DS, AX ; data segment]

MES1
MES2
MES3
MES4

Microprocessor

5-63 Assembly Language Programs

ST1:

NEXT:

NEXT1:

LAST:

ASC PROC

BBB1:

BACK1:

SKIP1:

MOV
INT

CMP
Jz

CMP
JNZ
PROMPT
CALL

PROMPT
CALL
JMP
PROMPT
JMP
MOV
INT
NEAR

MOV
MOV
DEC
XOR
LEA
MOV
CMP
JBE

MOV
MOV
MOV

INC
DEC

AH, 01H
21H

AL, '3"
LAST

AL, 'l
NEXT
MES7
ASC
LAST
AL, '2"'
NEXT1
MES7
DSC
LAST
MES6
ST1
AH, 4CH
21H

CL, ARRAY

CH, ARRAY

CH

DI, DI

BX, ARRAY

DL, [BX+DI+1]
DL, [BX+DI+2]
SKIP1

AH, [BX+DI+2]
[BX+DI+2],DL
[BX+DI+1],AH

DI

CH
BACK1
CL
BBB1

; Initialise counterl
; Initialise counter?

; Initialise pointer

; Initialise array base pointer
; Get the number

; Compare it with next number

; Otherwise
; exchange

; two numbers

Microprocessor

5-64 Assembly Language Programs

AGl:

DSC PROC

BBB:

BACK:

SKIP:

PROMPT MES5

MOV CH, 00
MOV CL, ARRAY
LEA DI, ARRAY
INC DI

INC DI

MOV AL, [DI}
CALL D_HEX2
PUSH AX

PUSH DX

MOV AH, 02H
MOV DL,"' '
INT 21H

POP DX

POP AX

LOCP AGl

RET

ENDP

NEAR

MOV CL,ARRAY

MOV CH, ARRAY

DEC CH

XOR DI,DI

LEA BX, ARRAY

MOV DL, [BX+DI+1]
CMP DL, [BX+DI+2]
JAE SKIP

MOV AH, [BX+DI+2]
MOV [BX+DI+2],DL
MOV [BX+DI+1],AH
INC DI

DEC CH

JNZ BACK

DEC CL

BBB

; Display sorted array

; Initialise counterl

; Initialise counter2

; Initialise pointer

; Initialise array base pointer
; Get the number

; Compare it with next number

; Otherwise
; exchange
; two numbers

Microprocessor

5-65 Assembly Language Programs-

AG:

PROMPT
MOV
MOV
LEA
INC
INC
MOV
CALL
PUSH
PUSH
MOV
MOV
INT
POP
POP
LOOP
RET
ENDP

MES5
CH, 00

CL, ARRAY

DI, ARRAY

DI

DI

AL, [DI]

D _HEX2 ; Display sorted array
AX

DX

AH,02H

bL,'

21H

DX

AX

AG

Assembly Language Programs

Microprocessor

END

Program 26 : Program to search a given byte in the string

.MODEL SMALL

.DATA
M1
M2
CHAR
ADDR
BUFF

.CODE

START

BACK

DB
DB
DB
DB
DB
DB
DB

MOV
MOV
MOV
MOV
INT
MOV
LEA
INT
MOV
INT
MOV
MOV
MOV
LEA
MOV
MOV
CMP

JZ

INC
DEC
JNZ
MOV
LEA
INT

10, 13,
10, 13,
0

0

80

0

80 DUP (0)

AX, @data
DS, AX
AH, 0SH

DX, OFFSET M1

21H

AH, OAH
DX, BUFF
21H

AH,01

21H

CHAR, AL
CH, 00H
CL, BUFF+1
BX, BUFF+2
DI, 00H
DL, [BX+DI]
DL, CHAR

NEXT
DI

CX
BACK
AH, 09H
DX, M2
21H

'ENTER
'GIVEN

14

THE STRING : §'
BYTE IS NOT IN THE STRING §$'

[Initialise
data segment]
Display messagel

Input the string

[Read character
from keyboard]
save character

Take character count in CX

point to the first character
compare string character with
given character

if match occurs go to next

Decrement character counter
If not = 0, repeat
[Display message M2

on the

monitor]

Microprocessor

5-67 Assembly Language Programs

NEXT:

LAST:

JMP LAST

MOV ADDR, DI ; save relative address of the
; byte from the starting
; location of the string

MOV AH, 4CH ; [Terminate and

INT 21H ; Exit to DOS]

END START

Program 27 : Program to find LCM of two 16-bit unsigned numbers

(Softcopy of this program, P24.asm is available at www.vtubooks.com)

If we divide the first number by the second number and there is no remainder, then
the first number is the LCM. In case of remainder, it is necessary to add first number to it
to get the new first number. After addition we have to divide the new first number by the
second number to check if the remainder is zero. If remainder is not zero again add the

original first number to

For examp’e, if two

new one and repeat the process.

numbers are 20 and 15 then we get LCM as follows :

20 + 15 = 1 Remainder 5i.e. 20
20+ 20 = 40 = 15 = 2 Remainder 10 i.e. # 0
40 + 20 = 60 + 15 = 4 Remainder 0
. LCM = 60
NAME LCM
PAGE. 60,80

TITLE program
.MODEL SMALL
.STACK 64
.DATA
NUMBERS
LCM
.CODE
START:

BACK:

to find LCM of two 16-bit unsigned numbers

Dw 0020, 0015
DW 2 DUP (?)

MOV AX, @DATA ; [Initialize

MOV DS, AX ; data segment]

MOV DX, 0

MOV AX, NUMBERS ; Get the first number

MOV BX,NUMBERS+2 ; Get the second number

PUSH AX ; [Save the

PUSH DX B first number]

DIV BX ; Divide if by second number
CMP DX, 0 ; Check if remainder = 0

JE EXIT ; if remainder = 0 then exit
POP DX

POP AX

ADD AX,NUMBERS ; First number + first number
JNC SKIP

INC DX

Microprocessor 5-68 Assembly Language Programs

SKIP: JMP BACK ; Goto BACK

EXIT: POP LCM+2 ;[Get
POP LCM ; the LCM]
MOV AH, 4CH ; [Terminate and
INT 21H H Exit to DOS]
END START

Program 28 : Program to find HCF of two numbers.

(Softcopy of this program, P25.asm is available at www.vtubooks.com)

To find the HCF of two numbers we have to divide greater number by smaller
number, if remainder is zero, divisor is a HCF. If remainder is not zero, remainder
becomes new divisor and previous divisor becomes dividend and this process is repeated
until we get remainder 0.

For example, if numbers are 20 and 15 we can find HCF as follows :

20 + 15 = 1 Remainder 5i.e. #0
15 + 5 = 3 Remainder 0
HCF = 5
.model small
.stack 100
.data
CR EQU OAH
LF EQU ODH
MES 1 DB CR,LF, 'ENTER 4-DIGIT FIRST HEX NO',CR,LF,'S'
MES 2 DB CR,LF,'ENTER 4-DIGIT SECOND HEX NO',CR,LF,'S'
MES_3 DB CR,LF, "INPUT IS INVALID BCD §$'
MES_4 DB CR,LF,'THE HCF IS : §'
MULTI DW 1,10,100,1000
RESULT DW (00)
DIVISOR DW (00)
DIVIDEND DW (00)
INP1 DB 05
DB 00
DB 05 DUP(0)
INP2 DB 05
DB 00
DB 05 DUP(0)
.code
MAIN: MOV AX,(@data ; [Initialise
MOV DS, AX ; data segment]
MOV AH, 09H ; [Display
MOV DX,OFFSET MES_l ; MES_l
INT 21H ; on video screen]
LEA DX, INP1 HE | Get the

MOV AH, OAH ; First

Microprocessor

Assembly Language Programs

AGAIN:

BACK:

NEXT:
SKIP:

INT
MOV
MOV
INT
LEA
MOV
INT
MOV
LEA
INC
INC
XOR
MOV
MOV
CMP
JG

SUB

SUB
MOV
INC
DEC

LEA
DEC
JINZ
MOV
LEA
INC
INC
MOV
SAL
AND
MOV
OR

MOV
SAL
AND
MOV
OR

MOV
MOV
LEA
INC
INC
MOV
SAL
AND
MOV
OR

21H
AH, 0SH

DX, OFFSET MES 2

21H

DX, INP2

AH, OAH

21H

CH, 02H

BX, INP1

BX

BX

DI,DI

CL, 04

AL, [BX+DI]

AL, 39H
NEXT

AL, 30H

SKIP

AL, 37H

[BX+DI],AL

DI

CL

BACK

BX, INP2

CH

AGAIN

CL,4

BX, INP1

BX

BX

AH, [BX+0]

AH,CL

AH, OF0H

AL, [BX+1]

AH, AL

AL, [BX+2]}

AL,CL

AL, OFOH

DH, [BX+3]

AL,DH

RESULT, AX

CL,4

BX, INP2

BX

BX

AH, [BX+0]

AH,CL

AH, OFOH

AL, [BX+1]

AH,AL

HEX number]
[Display
MES 2
on video screen]
[Get the
Second
HEX number]
Initialize buffer counter
Get the address of buffer
[Adjust buffer
pointer]
Clear pointer
Initialize counter for digits
Get the digit from buffer
[Convert
the ASCII
code of
the actual number
and store it in the same
position]
Increment pointer
Decrement digit counter
If not zero goto BACK
Point to second buffer
Decrement buffer counter
If not zero goto AGAIN
Initialize rotation counter
Point to first buffer
[Adjust buffer
pointer]
[Forms the
packed BCD
Higher
Byte]

[Forms the
packed BCD
Lower

byte]

Save packed word as a RESULT
Initialize rotation counter
Point to second buffer

[Adjust buffer

pointer]

[Forms the

packed BCD

Higher

byte]

Microprocessor

Assembly Language Programs

MOV
SAL
AND
MOV
OR

CMP
JNC
MOV
MOV
MOV

NEXT1: MOV
MOV
MOV
SKIP1: MOV
MOV
DIV
CMP
MOV
MOV

MOV
JNZ
MOV
LEA

INT
ADD

AL, [BX+2]
AL,CL

AL, OFOH

DH, [BX+3]
AL, DH

AX, RESULT.
NEXT1
DIVISOR, AX
CX,RESULT
DIVIDEND, CX
SKIP1
DIVIDEND, AX
CX, RESULT
DIVISOR, CX
DX, 0

AX, DIVIDEND
DIVISOR
DX, 0
CX,DIVISOR
DIVISOR, DX

DIVIDEND, CX
SKIP1

AH, 09H
DX,MES_4

21H
CL,30H

MOV~ DL, CL

MOV
INT
MOV
INT
END
END

AH, 02H
21H
AH, 4CH
21H
MAIN

[Forms the
packed BCD
lower
byte]

Compare two packed words

Assign smaller word as a
DIVISOR and
greater word as a DIVIDEND

Assign greater word as a
DIVIDEND and
smaller word as a DIVISOR

Perform division
Check remainder for zero

Load remainder as a new
DIVISOR
Load previous DIVISOR as a
new DIVIDEND
If remainder is not zero
goto SKIP1
[Display
MES 4
on video screen |
[Display the DIVISOR
when remainder
is zero
i.e. HCF]
[Terminate and
Exit to DOS 1]

Program 29 : Program to find LCM of two given numbers.

(Softcopy of this program, P26.asm is available at www.vtubooks.com)

There is a one more method to find LCM of two number if HCF is known. We can

find LCM as follows :

LCM = [numberl x number 2} + HCF

This program accepts two four digit numbers from keyboard, finds HCF first and
using above equation it then finds LCM of the two numbers.

Microprocessor

5-7 Assembly Language Programs

.model small

.stack 100
.data
CR EQU O0AH
LF EQU ODH
MES_l DB CR,LF,’ENTER 4-DIGIT FIRST HEX NO’,CR,LF, 'S’
MES_Z DB CR,LF,’ENTER 4-DIGIT SECOND HEX NO’ ,CR,LF, ‘$’
MES_3 DB CR,LF,’INPUT IS INVALID BCD S’
MES_4 DB CR,LF,’THE HCF IS : &’
MULTI Dw 1,10,100,1000
RESULT DW (00)
DIVISOR DW (00)
DIVIDEND DW (00)
INP1 DB 05
DB 00
DB 05 DUP(0)
INP2 DB 05
DB 00
DB 05 DUP(0)
.code
MAIN: MOV AX, @data HE Initialise
MOV DS, AX H data segment]
MOV AH, 09H ; [Display
MOV DX, OFFSET MES_l ; MES_l
INT 21H ; on video screen]
LEA DX, INP1 HE Get the
MOV AH, OAH ; First
INT 21H ; HEX number]
MOV AH, 09H ; [Display
MOV DX,OFFSET MES 2 ; MES 2
INT 21H ; on video screen]
LEA DX, INP2 | Get the
MOV AH, 0AH ; Second
INT 21H ; HEX number]
MOV CH, 02H ; Initialize buffer counter
LEA BX, INP1 ; Get the buffer pointer
AGAIN: INC BX ; [Adjust buffer
INC BX ; pointer]
XOR DI,DI ; Clear pointer
MOV CL, 04 ; Initialize counter for digits
BACK: MOV AL, [BX+DI] ; Get the digit from buffer
CMP AL, 39H ; [Convert
JG NEXT H the ASCII
SUB AL, 30H ; code

SKIP

; the actual number

Microprocessor

NEXT: SUB

SKIP: MOV
INC
DEC
JNZ
LEA
DEC
JINZ
MOV
LEA
INC
INC
MOV
SAL
AND
MOV
OR
MOV
SAL
AND
MOV
OR
MOV

MOV
LEA
INC
INC
MOV
SAL
AND
MOV
OR
MOV
SAL
AND
MOV
OR
MOV

CMP
JNC

AL, 37H
[BX+DI], AL
DI

CL

BACK

BX, INP2
CH

AGAIN
cL, 4

BX, INP1
BX

BX

AH, [BX+0]
AH, CL

AH, OFOH
AL, [BX+1]
AH, AL
AL, [BX+2]
AL, CL

AL, OFOH
DH, [BX+3]
AL, DH
RESULT, AX

CL, 4

BX, INP2
BX

BX

AH, [BX+0]
AH,CL

AH, OFOH
AL, [BX+1]
AH, AL
AL, [BX+2]
AL,CL

AL, OFOH
DH, [BX+3]
AL, DH
RESULT1, AX

AX,RESULT
NEXT1

and store 1t in the same
position]
Increment pointer
Decrement digit counter
If not zero goto BACK
Point to second buffer
Decrement buffer counter
If not zero goto AGAIN
Initialize rotation counter
Point to first buffer
[Adjust buffer
pointer]
[Forms the
packed BCD
Higher
Byte 1

[Forms the
packed BCD
Lower
byte 1]

Save the packed word as a
RESULT
Initialize rotation counter
Point to second buffer
[Adjust buffer

pointer]}
[Forms the

packed BCD

Higher

byte]

[Forms the
packed BCD
lower
byte]

Save second pack word as
a RESULTZ
Compare two packed words

Assembly Language Programs

Microprocessor

5-73

NEXT1:

SKIP1:

; Numberl X Number2 = HCF X LCM .

SKIP2:
NEXT2:

MOV
MOV
MOV
JMP

MOV
MOV
MOV
MOV
MOV
DIV
CMP
MOV
MOV

MOV

JNZ

MOV
LEA
INT

MOV
MOV
MOV
MUL
DIV
MOV
MOV
AND
SAR
CMP

DIVISOR, AX
CX,RESULT
DIVIDEND, CX
SKIP1

DIVIDEND, AX
CX,RESULT
DIVISOR, CX
DX, 0

AX, DIVIDEND
DIVISOR
DX, 0
CX,DIVISOR
DIVISOR, DX

DIVIDEND, CX
SKIP1

AH, O9H

DX, OFFSET MES 3

21H

HCF, CX
DX, 0
AX, RESULT
RESULT1
HCF
CL,4
BX, AX
AH, OFOH
AH,CL
AH, 09H
SKIP2
AH, 30H
NEXT?2
AH, 37H
DL, AH
AH, 02H
21H

AX, BX
AH, OFH
AH, 09H
SKIP3
AH, 30H
NEXT3

Assign smaller word as a
DIVISOR and
greater word as a DIVIDEND

Assign greater word as a
DIVIDEND and
smaller word as a DIVISOR

Perform division
Check remainder for zero

Load remainder as a new
DIVISOR
Load previous DIVISOR as a
new DIVIDEND
If remainder is not zero
goto SKIP1
[Display

MES 3

on video screen]
. LCM = (Numberl X Number2) /HCF

Get the first number
Multiply numberl and number?
Divide multiplication by HCF
Initialize rotation counter
Save the quotient (LCM)
[Display the LCM

on the video screen]

Assembly Language Programs

Microprocessor

Assembly Language Programs

SKIP3:
NEXT3:

SKIP4:
NEXT4:

SKIP5:
NEXTS:

ADD

AH, 37H

MOV DL, AH

MOV
INT
MOV
AND
SAR
CMP

AH, 02H
21H
AX, BX
AL, OFOH
AL,CL
AL, 09H
SKIP4
AL, 30H
NEXT4
AL, 37H
DL, AL
AH, 02H
21H
AX, BX
AL, OFH
AL, 09H
SKIP5
AL, 30H
NEXTS
AL, 37H
DL, AL
AH, 02H
21H
AH, 4CH
21H
MAIN

~e
—

Terminate and
Exit to DOS]

aaa

M

8086 Interrupts

—

6.1 Introduction

Sometimes it is necessary to have the computer automatically execute one of a
collection of special routines whenever certain conditions exists within a program or in the
microcomputer system. For example, it is necessary that microcomputer system should
give response to devices such as keyboard, sensor and other components when they
request for service.

The most common method of servicing such device is the polled approach. This is
where the processor must test each device in sequence and in effect “ask” each one if it
needs communication with the processor. It is easy to see that a large portion of the main
program is looping through this continuous polling cycle. Such a method would have a
serious and decremental effect on system throughput, thus limiting the tasks that could be
assumed by the microcomputer and reducing the cost effectiveness of using such devices.

A more desirable method would be the one that allows the microprocessor to execute
its main program and only stop to service peripheral devices when it is told to do so by
the device itself. In effect, the method, would provide an external asynchronous input that
would inform the processor that it should complete whatever instruction that is currently
being executed and fetch a new routine that will service the requesting device. Once this
servicing is completed, the processor would resume exactly where it left off. This method
is called interrupt method. It is easy to see that system throughput would drastically
increase, and thus enhance its cost effectiveness. Most microprocessors allow execution of
special routines by interrupting normal program execution. When a microprocessor is
interrupted, it stops executing its current program and calls a special routine which
“services” the interrupt. The event that causes the interruption is called interrupt and the
special routine executed to service the interrupt is called interrupt service
routine/procedure. Normal program can be interrupted by three ways :

1. By external signal
2. By a special instruction in the program or
3. By the occurrence of some condition.

(6-1)

Microprocessor 6-2 8086 Interrupts

An interrupt caused by an external signal is referred as a hardware interrupt.
Conditional interrupts or interrupts caused by special instructions are called software
interrupts.

6.2 Interrupt Cycle of 8086/88

An 8086 interrupt can come from any one the three sources :
e External signal
o Special instruction in the program

e Condition produced by instruction.

6.2.1 External Signal (Hardware Interrupt)

An 8086 can get interrupt from an external signal applied to the non maskable
interrupt (NMI) input pin, or the interrupt (INTR) input pin.

6.2.2 Special Instruction

8086 supports a special instruction, INT to execute special program. At the end of the
interrupt service routine, execution is usually returned to the interrupted program.

6.2.3 Condition Produced by Instruction

An 8086 is interrupted by some condition produced in the 8086 by the execution of an
instruction. For example divide by zero : Program execution will automatically be
interrupted if you attempt to divide an operand by zero.

At the end of each instruction cycle 8086 checks to see if there is any interrupt request.
If so, 8086 responds to the interrupt by performing series of actions (Refer Fig. 6.1).

1. It decrements stack pointer by 2 and pushes the flag register on the stack .

2. It disables the INTR interrupt input by clearing the interrupt flag in the flag
register.

3. It resets the trap flag in the flag register.

4. It decrements stack pointer by 2 and pushes the current code segment register
contents on the stack.

5. It decrements stack pointer by 2 and pushes the current instruction pointer
contents on the stack.

6. It does an indirect far jump at the start of the procedure by loading the CS and IP
values for the start of the interrupt service routine (ISR).

An IRET instruction at the end of the interrupt service procedure returns execution to
the main program.

Microprocessor 6-3 8086 Interrupts

INTERRUPT
SERVICE
PROCEDURE

MAINLINE PUSH FLAGS PUSH REGISTERS
PROGRAM CLEARIF
CLEAR TF
PUSH CS
PUSH IP
< FETCH ISR ADDRESS

POP IP

POP CS
POP FLAGS
POP REGISTERS

IRET

Fig. 6.1 8086 interrupt response

Now the question is “How to get the values of CS and IP register ?” The 8086 gets the
new values of CS and IP register from four memory addresses. When it responds to an
interrupt, the 8086 goes to memory locations to get the CS and IP values for the start of
the interrupt service routine. In an 8086 system the first 1 kbyte of memory from 00000H
to O03FFH is reserved for storing the starting addresses of interrupt service routines. This
block of memory is often called the interrupt vector table or the interrupt pointer table.
Since 4 bytes are required to store the CS and IP values for each interrupt service
procedure, the table can hold the starting addresses for 256 interrupt service routines.
Fig. 6.2 shows how the 256 interrupt pointers are arranged in the memory table.

Each interrupt type is given a number between 0 to 255 and the address of each
interrupt is found by multiplying the type by 4 e.g. for type 11, interrupt address is
11x4=44 = 0002CH.

Onlv first five tvpes have explicit definitions such as divide by zero and non maskuhle
mterrupt. The next 27 interrupt types, from 5 to 31, are reserved by intel for use in fulwre
microprocessors. The upper 224 interrupt types, from 32 to 255, are available for user for
hardware or software interrupts.

When the 8086 responds to an interrupt, it automatically goes to the specified location
in the interrupt vector table to get the starting address of interrupt service routine. So user
has to load these starting addresses for different routines at the start of the program.

Microprocessor 8086 Interrupts

ADDRESS
3FFH
| TYPE 255 POINTER: __|
(AVAILABLE)
3FCH
AVAILABLE INTERRUPT 1 1
POINTERS (224) | TYPE33POINTER: __|
(AVAILABLE)
084H
| TYPE32POINTER: __|
080H (AVAILABLE)
07FH | TYPE31POINTER: __|
(RESERVED)
RESERVED INTERRUPT N J-
POINTERS (27) T 1
| TYPESPOINTER: __|
(RESERVED)
014H
[| TYPE4POINTER:
OVERFLOW
010H
| TYPE3POINTER: _|
1-BYTE INT INSTRUCTION
00CH
DEDICATED INTERRUPT | TYPE2POINTER: __|
POINTERS (5) NON-MASKABLE
008H
| TYPE1POINTER: _ |
SINGLE-STEP
004H _——
TYPEOPOINTER: __| | ___CSBASEADDRESS __ |
\ [DIVIDE ERROR IP OFFSET
000H -

fe— 16BITS ——]

Fig. 6.2 8086 interrupt vector table
6.3 8086 Interrupt Types

6.3.1 Divide by Zero interrupt (Type 0)

When the quotient from either a DIV or IDIV instruction is too large to fit in the result
register; 8086 will automatically execute type 0 interrupt.

6.3.2 Single Step Interrupt (Type 1)

The type 1 interrupt is the single step trap. In the single step mode, system will
execute one instruction and wait for further direction from user. Then user can examine
the contents of registers and memory locations and if they are correct, user can tell the
system to execute the next instruction. This feature is useful for debugging assembly
language programs.

Microprocessor 6-5 8086 Interrupts

An 8086 system is used in the single step mode by setting the trap flag. If the trap flag
is set, the 8086 will automatically execute a type 1 interrupt after execution of each
instruction. But the 8086 has no such instruction to directly set or reset the trap flag. These
operations can be performed by taking the flag register contents into memory, changing
the memory contents so to set or reset trap flag and save the memory contents into flag
register.

Assembly language program to set trap flag :

PUSHF ; save the contents of trap flag in
stack memory
copy SP to BP for use as index
set the Bit 8 in the memory pointed
by BP i.e. set TF bit
POPF ; Restore the flag register with TF = 1
To reset the trap flag we have to reset Bit 8. This can be done by using AND ([BP + 0],
OFEFFH instruction instead of OR [BP + 0], 0100H.

MOV BP, SP
OR [BP + 0], 0100H

e Ne o Ne Ne N

6.3.3 Non Maskable Interrupt (Type 2)

As the name suggests, this interrupt cannot be disabled by any software instruction.
This interrupt is activated by low to high transition on 8086 NMI input pin. In response,
8086 will do a type 2 interrupt.

6.3.4 Breakpoint Interrupt (Type 3)

The type 3 interrupt is used to implement breakpoint function in the system. The
type 3 interrupt is produced by execution of the INT 3 instruction. Breakpoint function is
often used as a debugging aid in cases where single stepping provides more detail than
wanted. When you insert a breakpoint, the system executes the instructions upto the
breakpoint, and then goes to the breakpoint procedure. In the breakpoint procedure you
can write a program to display register contents, memory contents and other information
that is required to debug your program. You can insert as many breakpoints as you want
In your program.

6.3.5 Overflow Interrupt (Type 4)

The type 4 interrupt is used to check overflow condition after any signed arithm~tic
operation in the system. The 8086 overflow flag, OF, will be represented in the destination
register or memcry location.

For example, if you add the 8-bit signed number 0111 1000 (+ 120 decimal) and the
8-bit signed number 0110 1010 (+ 106 decimal), result is 1110 0010 (- 98 decimal). In
signed numbers, MSB (Most Significant Bit) is reserved for sign and other bits represent
magnitude of the number. In the previous example, after addition of two 8-bit signed
numbers result is negative, since it is too large to fit in 7-bits. To detect this condition in
the program, you can put interrupt on overflow instruction, INTO, immediately after the
arithmetic instruction in the program. If the overflow flag is not set when the 8086

Microprocessor 6-6 8086 Interrupts

executes the INTO instruction, the instruction will simply function as an NOP (no
operation). However, if the overflow flag is set, indicating an overflow error, the 8086 will
execute a type 4 interrupt after executing the INTO instruction.

Another way to detect and respond to an overflow error in a program is to put the
jump if overflow instruction, (JO) immediately after the arithmetic instruction. If the
overflow flag is set as a result of arithmetic operation, execution will jump to the address
specified in the JO instruction. At this address you can put an error routine which
responds in the way you want to the overflow.

6.3.6 Software Interrupts
Type 0 - 255 :

The 8086 INT instruction can be used to cause the 8086 to do one of the 256 possible
interrupt types. The interrupt type is specified by the number as a part of the instruction.
You can use an INT2 instruction to send execution to an NMI interrupt service routine.
This allows you to test the NMI routine without needing to apply an external signal to the
NMI input of the 8086.

With the software interrupts you can call the desired routines from many different
programs in a system e.g. BIOS in IBM PC. The IBM PC has in its ROM collection of
routines, each performing some specific function such as reading character from keyboard,
writing character to CRT. This collection of routines referred to as Basic Input Output
System or BIOS.

The BIOS routines are called with INT instructions. We will summarize interrupt
response and how it is serviced by going through following steps.

1. 8086 pushes the flag register on the stack.

2. It disables the single step and the INTR input by clearing the trap flag and

interrupt flag in the flag register.

3. It saves the current CS and IP register contents by pushing them on the stack.

4. It does an indirect far jump to the start of the routine by loading the new values

of C$ and IP register from the memory whose address calculated by multiplying 4
to the interrupt type, For example, if interrupt type is 4 then memory address is

4 x 4 = 10,5 = 10H. So 8086 will read new value of IP from 00010H and CS from
00012H.

5. Once these values are loaded in the CS and IP, 8086 will fetch the instruction from
the new address which is the starting address of interrupt service routine.

6. An IRET instruction at the end of the interrupt service routine gets the previous
values of CS and IP by popping the CS and IP from the stack.

7. At the end the flag register contents are copied back into flag register by popping
the flag register form stack.

Microprocessor 6-7 8086 Interrupts

6.3.7 Maskable Interrupt (INTR)

The 8086 INTR input can be used to interrupt a program execution. The 8086 is
provided with a maskable handshake interrupt. This interrupt is implemented by using
two pins - INTR and INTA. This interrupt can be enabled or disabled by STI (IF=1) or CLI
(IF=0), respectively. When the 8086 is reset, the interrupt flag is automatically cleared
(IF=0). So after reset INTR is disabled. User has to execute STI instruction to enable INTR
interrupt.

The 8086 responds to an INTR interrupt as follows :

1. The 8086 first does two interrupt acknowledge machine cycles as shown in the
Fig. 6.3 to get the interrupt type from the external device. In the first interrupt
acknowledge machine cycle the 8086 floats the data bus lines AD;-AD;5 and sends
out an INTA pulse on its INTA output pin. This indicates an interrupt
acknowledge cycle in progress and the system is ready to accept the interrupt type
from the external device. During the second interrupt acknowledge machine cycle
the 8086 sends out another pulse on its INTA output pin. In response to this
second INTA pulse the external device puts the interrupt type on lower 8-bits of
the data bus.

PToo I T F Ta | Ta | Ty | To) Ty | T | T3) T4 |

ne_/\ — 7/ \

4

m \ LL /

124
L

INTA \ /

————\ FLOAT
ADy-AD,) 5

Interrupt
type

Fig. 6.3 Interrupt acknowledge machine cycle

2. Once the 8086 receives the interrupt type, it pushes the flag register on the stack,
clears TF and IF, and pushes the CS and IP values of the next instruction on the
stack.

3. The 8086 then gets the new value of IP from the memory address equal to 4 times
the interrupt type (number), and CS value from memory address equal to 4 times
the interrupt number plus 2.

Microprocessor 6-8 8086 Interrupts

6.4 Interrupt Priorities

As far as the 8086 interrupt priorities are concerned, software interrupts (All interrupts
except single step, NMI and INTR interrupts) have the highest priority, followed by NMI
followed by INTR. Single step has the least priority.

Interrupt Priority
Divide Error, Int n, Int 0 HIGHEST
NMI 2
INTR d
SINGLE - STEP LOWEST

The interrupt flag is automatically
MAIN PROGRAM cleared as part of the response of an 8086 to
an interrupt. This prevents a signal on the

INTR input from interrupting a higher

NMI

DIVIDE ERROR priority interrupt service routine. The 8086

PUSH FLAGS, CS. IP all.ow.s NMI input to interrupt higher
CLEARTF & IF priority interrupt, for example suppose that
TRANSFER CONTROL a rising edge signal arrives at the NMI input
F=0TF=0 .whlle .the 8086 is exe.c1‘1tmg a PIV

instruction, and that the division operation

PUSH FLAGS, CS, IP produces a divide error. Since the 8086
CLEARTF & IF S A1 i ;
TRANSFER CONTROL checks for mternall interrupts before .1t
checks for an NMI interrupt, the 8086 will

push the flags on the stack, clear TF and IF,

EXECUTE NMI push the return address on the stack, a.nd
go to the start of the divide error service

RETURNIF=0 IF=0 routine. The 8086 will then do an NMI

EXECUTE DIVIDE interrupt ?esponse 'and . execute
ERROR ROUTINE non-maskable interrupt service routine. After
completion of NMT service routine an R0R6

RETURN TO MAIN PROGRAM will return to the divide crror routine. it

Fig. 6.4 Flowchart for divide error routine will execute divide error routine and then it
will return to the main program

(Refer Fig. 6.4).

6.5 Expanding Interrupt Structure using PIC 8259

Interrupts can be used for a variety of applications. Each of these interrupt applications
requires a separate interrupt input. If we are working with an 8086, we get only two
interrupt inputs INTR and NMI For applications where we have multiple interrupt
sources, we use external device called a priority interrupt controller (PIC). Fig. 6.5 shows
the connection between 8086 and 8259.

Microprocessor 6-9 8086 Interrupts

o e mf—
AD, D, R,

|
8086 8259

IRy fo—ro
INTA —=q INTA IR; |

IR Jae——
INTR INT IR,

Fig. 6.5 Connection between 8086 and 8259

6.5.1 Features of 8259

L. It can manage eight priority interrupts. This is equivalent to provide eight
interrupt pins on the processor in place of INTR pin.

2. It is possible to locate vector table for these additional interrupts any where in the
memory map. However, all eight interrupts are spaced at the interval of either four
or eight locations.

3. By cascading 8259s it is possible to get 64 priority interrupts.
4. Interrupt mask register makes it possible to mask individual interrupt request.

5. The 8259A can be programmed to accept either the level triggered or the edge
triggered interrupt request.

6. With the help of 8259A user can get the information of pending interrupts,
in-service interrupts and masked interrupts.

7. The 8259A is designed to minimize the software and real time overhead in
handling multilevel priority interrupts.

6.5.2 Block Diagram of 8259A

Fig. 6.6 shows the internal block diagram of the 8259A. It includes eight blocks : data
bus buffer, read/write logic, control logic, three registers (IRR, ISR and IMR), priority
resolver, and cascade buffer.

Data Bus Buffer

The data bus allows the 8086 to send control words to the 8259A and read a status
word from the 8259A and read a status word from the 8259A. The 8-bit data bus also
allows the 8259A to send interrupt types to the 8086.

Microprocessor 6-10 8086 Interrupts

INTA INT

CONTROL LOGIC
D7'Do<:> pata K>

BUS
BUFFER
RD —— a
READ/ @
75 ———d WRITE 2
WR LOGIC Z '—‘123
AD u IN INTERRUPT L R}
f SERVICE <:> PRIORITY p*—] REQUEST |+—IR;
Cs } REG RESOLVER [N REG [=—R4
: (1SR) (IRR) ~—-:§5
CASy = R
CASCADE
CAS; =—1 BUFFER |—
COMPARATOR ;)
CAS, ——] - INTERRUPT MASK REG (IMR)
) .

SP/EN_.___—T

Fig. 6.6 Block diagram of 8259A
Read/Write Logic

The RD and WR inputs control_the data flow on the data bus when the device is
selected by asserting its chip select (CS) input low.

Control Logic

This block has an input and an output line. If the 8259A is properly enabled the
interrupt request will cause the 8259A to assert its INT output pin high. If this pin is
connected to the INTR pin of an 8086 and if the 8086 interrupt flag is set, then this high
signal will cause the 8086 to respond INTR as explained earlier.

Interrupt Request Register (IRR)

The IRR is used to store all the interrupt levels which are requesting service. the eighi
interrupt inputs set corresponding bits of the Interrupt Request Register.
Interrupt Service Register (ISR)

The Interrupt Service Register (ISK) stores all the levels that are currently being
serviced.
interrupt Mask Register (IMR)

Interrupt Mask Register (IMR) stores the masking bits of the interrupt lines to be
masked. This register can be programmed by an OCW. An interrupt which is masked by
software will not be recognised and serviced even if it set the corresponding bits in the
IRR.

Microprocessor 6-11 8086 Interrupts

Priority Resolver

The priority resolver determines the priorities of the bits set in the IRR. The bit
corresponding to the highest priority interrupt input is set in the ISR during the INTA
input.

Cascade Buffer Comparator

This section generates control signals necessary for cascade operations. It also generates
Buffer-Enable signals. As stated earlier, the 8259 can be cascaded with other 8259s in order
to expand the interrupt handling capacity to sixty-four levels. In such a case, the former is
called a master, and the latter are called slaves. The 8259 can be set up as a master or a
slave by the SP / EN pin.

CAS 0 -2

For a master 8259, the CAS(-CAS, pins are outputs, and for slave 8259s, these are
inputs. When the 8259 is a master (that is, when it accepts interrupt requests from other
8259s), the CALL opcode is generated by the Master in response to the first INTA. The
vectoring address must be released by the slave 8259. The master sends an identification
code of three-bits (to select one out of the eight possible slave 8259s) on the CAS;-CAS,
lines. The slave 8259s accept these three signals as inputs (on their CAS)-CAS, pins) and
compare the code sent by the master with the codes assigned to them during initialisation.
The slave thus selected (which had originally placed an interrupt request to the master
8259) then puts out the address of the interrupt service routine during the second and
third INTA pulses from the CPU.

SP / EN (Slave Program /Enable Buffer)
The SP / EN signal is tied high for the master. However, it is grounded for the slave.

In large systems where buffers are used to drive the data bus, the data sent by the
8259 in response to INTA cannot be accessed by the CPU (due to the data bus buffer
being disabled).

If an 8259 is used in the buffered mode (buffered or non-buffered modes of operation
can be specified at the time of initialising the 8259), the SP / EN pin is used as an output
which can be used to enable the system data bus buffer whenever the 8259’s data bus
outputs are enabled (when it is ready to send data).

Means, in non-buffered mode, the SP/EN pin of an 8259 is used to specify whether
the 8259 1s to operate as a master or as a slave, and in the buffered mode, the SP/EN pin
is used as an output to enable the data bus buffer of the system.

6.5.3 Interrupt Sequence
The events occur as follows in an 8086 system :

1. One or more of the INTERRUPT REQUEST lines (IR0O-IR7) are raised high, setting
the corresponding IRR bit(s).

Microprocessor 6-12 8086 Interrupts

2. The priority resolver checks three registers : The IRR for interrupt requests, the
IMR for masking bits, and the ISR for the interrupt request being served. It
resolves the priority and sets the INT high when appropriate.

3. The CPU acknowledges the INT and responds with an INTA pulse.
4. Upon receiving an INTA from the CPU, the highest priority ISR bit is set and the
corresponding IRR bit is reset. The 8259A does not drive data bus during this

cycle.

5. A selection of priority modes is available to the programmer so that the manner in
which the requests are processed by the 8259A can be configured to match his
system requirements. The priority modes can be changed or reconfigured
dynamically at any time during the main program. This means that the complete
interrupt service structure can be defined as required, based on the total system
environment.

6. The 8086 will initiate a second INTA pulse. During this pulse, the 8259A releases a
8-bit pointer (interrupt type) onto the Data Bus where it is read by the CPU.

7. This completes the interrupt cycle. In the AEOI mode the ISR bit is reset at the end
of the second INTA pulse. Otherwise, the ISR bit remains set until an appropriate
EOI command is issued at the end of the interrupt subroutine.

6.5.4 Priority Modes and Other Features
The various modes of operation of the 8259 are :
(a) Fully Nested Mode,
(b) Rotating Priority Mode,
(¢) Special Masked Mode, and
(d) Polled Mode.

a) Fully Nested Mode :

After initialization, the 8259A operates in fully nested mode so it is called as default
mode. The 8259 continues to operate in the Fully Nested Mode until the mode is changed
through Operation Command Words. In this mode, IR0 has highest priority and IR7 has
lowest priority. When the interrupt is acknowledged, it sets the corresponding bit in ISR.
This bit will prevent all interrupts of the same or lower level, however it will accept
higher priority interrupt requests. The vector address corresponding to this interrupt is
then sent. The bit in the ISR will remain set until an EOI command is issued by the
microprocessor at the end of interrupt service routine.

But if AEOI (Automatic End of Interrupt) bit is set, the bit in the ISR resets at the
trailing edge of the last INTA.

End of Interrupt (EOI)

The IS bit can be reset by an End of Interrupt command issued by the CPU, usually
just before exiting from the interrupt routine.

